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Abstract

Conser'ation of potential vorticity in Eulerian fluids reflects particle interchange
symmetry in the Lagrangian fluid version of the same theory. The algebra associated
with this symmetry in the shallow water equations is studied here, and we give a
method for truncating the degrees of freedom of the theory which preserves a maxi-
mal number of invariants associated with this algebra. The symmetry associated with
keeping N modes of the shallow water flow is SU(N). In the limit where the number of
modes goes to infinity (N --+ co), all the conservation laws connected with potential
vorticity conservation are recovered. We also present a Hiamiltonian which is invari-
ant under this truncated symmetry and which reduces to the familiar shallow water
Hamiltonian when N -- oo. All this provides a finite dimensional framework for nu-
merical work with the shallow water equations which preserves not only energy and
enstrophy but all other known conserved quantities consistent with the finite number
of degrees of freedom. The extension of these ideas to other nearly two dimensional
flows is discussed.
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1 Introduction

Many geophysical problems are naturally decomposed into a many layered approximation

with each layer governed by the so-called shallow water equations [1]. These equations take

the fluid density to be constant in each layer, and because the horizontal dimensions are

assumed much larger than the vertical, hydrostatic balance is taken to hold in each layer

separately. Vertical variations in each layer are ignored in the two dimensional horizontal

velocity v(x,t) = [vj(x,y,t),V 2 (x,y,t)] (x = (x,y)), and incompressibility

a , (x, zt)V -vC=, t) + -o,0

determines the vertical velocity v3(x z.t). Using local hydrostatic balance, the pressure is

eliminated in terms of the thickness of the vertical layer, h(x, t), and h(x, t) becomes the

third dependent dynamical variable for the reduced system.

The evolution equations for v(x, t) and h(x, t) serve both as a useful model for the dy-

namics in a thin layer of fluid and as an important ingredient in more complicated models of

the whole atmosphere or ocean [2]. In complex models which attempt to represent the full

dynamics of the atmosphere, for example, one must add to the basic shallow water equa-

tions additional dynamics to describe radiative transfer, internal waves, cloud formation,

relevant chemistry, etc. Whatever the goal of the dynamics of the shallow water equations,

if one is to solve these equations some form of truncation of the infinite degrees of freedom

must be made to progress numerically. Truncations directly in Eulerian or Lagrangian

configuration space or in the dual Fourier space fail to preserve all the conservation laws

respected by the underlying particle interchange symmetry of the Lagrangian theory which

exhibits itself in the conser,,tion of potential vorticity in Eulerian fluid mechanics. These

latter remarks, of course, apply only when the shallow water flow is inviscid, as we shall
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assume throughout this paper. We shall have a few remarks to make at the end of this

paper about the potential use of our results for the case with friction.

In this paper we take up the much studied subject of shallow water equations with the

goal of providing a truncation of the degrees of freedom from infinity to a finite number

using a method which preserves the maximum number of conserved quantities consistent

with the reduction in the number of degrees of freedom. When this number returns to

infinity, that is when the truncation is removed, the theory preserves all the quantities

associated with potential vorticity conservation. Our work takes place in the Lagrangian

formulation of the theory. The truncation is made in the Fourier space of variables dual

to the Lagrangian labels of fluid particles. The algebra associated with the symmetry of

pai ticle interchange is altered as part of the truncation, and the finite number of Casimir

invariants of the new algebra, which is SU(N) and thus familiar, replace the infinite number

of conserved quantities following from potential vorticity conservation. In the limit N

oo, the usual conserved quantities are recovered.

The methods we shall use we first learned from two sources. One is the work by Fairlie,

Ct al 13] on finite algebras in string theory, and the other is an application of those methods

to the two dimensional Euler equations independently invented by Rouhi [4] and Zeitlin 15].

The latter application may be quite interesting in other geophysical applications where two

dimensional Eulerian flows are studied, but we have not pursued that line of investigation.

We have analyzed the shallow water equations, as presented here, both for their interest

as indicated, and also because they have numerous useful formal similarities with internal

wave dynamics and with surface wave physics. We will indicate these similarities at the

end of this paper. Our work here is also in planar geometries. The extension to flows on a

sphere, while algebraically complicated, is more or less straightforward in concept as seen
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in the paper of Hoppe [6].

The shallow water equations and their numerical solution using various truncations has

become a subject of renewed interest of late because of the work to place these equations

and their more complex forms on parallel processing machines 17). The goal of that ef-

fort is to build numerically efficient climate models for investigations of very long times

(thousands of simulated years) and/or issues requiring very high spatial resolution. We

expect that the truncation presented here, which by its formulation preserves as much

of the original symmetry as possible of the structure of the shallow water equations, will

prove an attractive alternative to straightforward finite element, discrete spatial grid, or

spectral methods for these equations.

In the next Section we review the shallow water equations in Eulerian and Lagrangian

formulation and write down the algebraic structure associated with particle interchange

symmetry. The third Section is devoted to the SU(N) truncation of the theory in La-

grangian formulation and also presents the truncated Hamiltonian for the shallow water

flow. The final Section has our comments about further uses of our observations in other

problems of geophysical interest and contains the summary of our present work.

2 Shallow Water Theory

2.1 Equations of Motion and Symmetry

The Eulerian shallow water equations govern the evolution of a two dimensional horizontal

velocity v(x, t) in a fluid of vertical thickness h(x, t) of the fluid via the familiar evolution

equations

av(xt) ±v(xt).Vv(x,t) = -gVh(x,t)

at
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t+V.lh=x,y)v~x,t)= 0, (2)

at

where g is the gravitational constant and V = [31,, 21. If the frame is rotating about the

z-axis at angular velocity f/2, a term v(x, t) x if(x) appears in the equation for v(x, t).

As indicated above these equations follow from the three dimensional Euler equations of

a thin, homogeneous fluid with hydrostatic balance in each layer determining the pressure

p(x,z,t) in that layer in terms of the thickness p(x, z,t) = g[h(x,t) - z].

The total energy

HE(v,h) = f dzIIV (X,t)12 + h(x,t)•2 , (3)

is conserved by solutions to L'hese equations and the Eulerian potential vorticity

qE(x.t) V X v(xt) (4)
h(x, t)

satisfies

aqE(x, t) V(z't)-qE(xt) =0, (5)
at

so

f 2xh(x,t)G(qE(Xt)) (6)

is time independent for arbitrary G(qE).

These conservation laws arise from the particle interchange symmetry exhibited by

the canonical or Lagrangian formulation of the theory. In Lagrangian formulation, the

dynamical variables are the particle position Y(r, t) at every particle label r and time and

the conjugate momentum P(r,t). In terms of these variables the Hamiltonian reads

HL(Y,P) = 21 d2 r P(r,t)1I + gJ(Y(r,t)-'t , (7)
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where the Jacobian

J(Y(r,t)) = a(Y)a(r)

has been introduced. In these equations and below a Lagrangian density po(r) which

describes the distribution of mass among the particles labeled by r has been absorbed into

the definition of the labels themselves 18].

The evolution in time of any functional A[Y(r,t),P(r,t)j follows from Hamiltonian's

equations

aA[Y(r,t),P(r,t)] = {AJY(r,t),P(r,t)], H(Y,P)}, (9)
at

introducing the canonical Poisson brackets between functionals A(Y, P) and B(Y, P)

d ar A(Y,P)abB(YP) (10N

{A(Y,P),B(Y,P)} I a6Y(rt) a&P(rt) (A - B)J.

The fundamental canonical brackets between Y(r,t) and P(r,t)

{Y.(rt),Pb(r',t)} = tab66(r - r') (LI)

follow from this bracket, and we shall use it extensively below.

In this notation the potential vorticity takes the form

ay (r, t) aP,,(r, t) (2
q(r, t) = ar, arb (12)

where the indices a, b, ot,... run over 1 and 2, and repeated indices are summed over. Eab

is the completely antisymmetric symbol in two dimensions. The conservation law is

-q(r,t) 0, (13)
a:t

and all derivatives in Lagrangian formulation are taken at fixed r. The integrals

C[YP= f d2rG(q(r,t)) (14)

6



are clearly constant in time for any G(q).

The generators of the particle interchange symmetry are determined by examining the

invariance of the action defining Hamilton's principle

ACTION = 2 f 1laY(r,t) 12 - gJ 1 ] (15)

under variations in r at fixed Y(r,t) iind fixed J. These variations must be of the form 9I9

9A(r) (16)
arb

with A(r) an arbitrary function of r. The time independent functional C[Y,P) defined

above has the property that

aC[YP}fab3  aG(q) (17)

which is of the correct form. So the global generators of the particle interchange symmetry

are just integrals of arbitrary functions of the potential vorticity. The algebra associated

with the particle interchange symmetry is rather rich. The potential vorticity does not

Poisson commute with itself, but the Poisson brackets of the q(r, t) do close on themselves.

We turn to this algebra now.

2.2 Potential Vorticity Algebra

To study the algebra of the potential vorticity we have found it most straightforward to

work in the Fourier space dual to the particle labels r. We continue to work in planar

geometry and limit horizontal space to a box of size L x L. In this box we introduce

Fourier transforms as follows: for functions f (r) we write

(r) = o7 g(n) exp[tinn. (18)
fl-oo
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and the inverse

g(n) = -f / d2r f(r) exp[-ixcn rj, (19)

where the vectors n,m,... are composed of integers n = [nI,n2];n. = 0,±1,±2,..., and

te = 27r/L. We take the Fourier decomposition of the canonical variables to be

Y(r) = 1 Z Q(n) exp[inn r]
n

P(r,t) = 1ZE 1(n) exp[ixn'r], (20)
n

which gives the Poisson brackets in Fourier space

{Q.(n), lb(m)} = ý.bbn,- (21)

Using this Fourier transformed set of canonical variables we have for the potential vorticity

q(r) = ---7- * r(n) exp[icn, r], (22)
n

with

ý(n) = n x m1J0 (m)Q.(n - m). (23)

We have defined the quantity n x m = njm 2 - n2mr is this equation, and the normalization

for ý(n) has been chosen to make the last formula and many to follow as simple as possible.

The algebraic properties of ý(n) arc seen in the Poisson brackets

{ý(n),Q.(m)} = nxmQ0 (n+m),

{ý(n),nlQmrn)} = nxmno,(n+rm), (24)

and

{~ ý(n),'(m)} = n x m (n + m). (25)

8



The last Poisson bracket exhibits the structure of the particle interchange algebra and

shows it to be an infinite dimensional algebra, as we might expect since it comes from a

continuum set of operations on label space r. This set of continuum operations translates

via the Fourier transform into a discrete infinity of operation in n space.

We will also require the properties of the Jacobian under Poisson commutation with the

potential vorticity '(n) since we will be interested in construction a Hamiltonian invariant

under the particle interchange symmetry. The Hamiltonian of the shallow water equations

is invariant under this symmetry, which is our starting point for all this after all, and this

invariance is the same statement as the time independence of q(r, t)

aq(r, t)art = {q(r,t),H(Y,P)} = 0. (26)

When we truncate the Fourier transform variables in just a moment we will want to retain

this invariance under the truncated potential vorticity. The transformation properties of

the Jacobian under ý(n) will be of interest in this.

The Fourier decomposition of the Jacobian is

J(Y (r,t)) - a(r)

(2 7r)-2  p(n) exp[itcn. r], (27)
Vn

which gives

p(n) = M I x MQ(m) x Q(m')bn,m+m,

= n x mQ, (m)Q2(n - m). (28)

The Poisson bracket of ý(n) and p(m) is then

{f(n),p(m)} = n x mp(m + n). (29)

9



One may summarize these brackets as saying that under the infinite Z'lgebra of the

potential vorticity c(n) the clmr.Lities Q(m),/11(m),p(rn) and ý(,n) itself transform as

"vectors".

3 Trv-rncation of the Modes

3.1 Algebra of the Truncated Modes: SU(N)

Our truncation of the particle interchange algebra is motivated by the idea of limiting

the number of Fourier modes, but a simple cutoff on the components of the vectors n

does not respect the Poisson brackets. Suppose we limit each component of our integer

vectors n = [ni,n 2 l] to -A. < n,, < A', then the presence of the sun. vectors n + i

in the Poisson brackets of •i(n) means that vectors in the range are mapped out of the

range. To address this we note that restricting vectors in label space to a box of size L x L

and making the Fourier transform, we have in effect mapped our space onto a torus by

implicitly identifying the sides under the assumption of periodicity. If we were to formalize

this periodicity by requiring all sums of integer vectors to lie within the range [-.Af', MA by

a modulo or remainder operation, we would still need to deal with the terms n x m that

appear in all of the Poisson bracketz with c(n). These are the so called structure constants

associated with the group properties of particle relabeling invariance, so it is suggestive

that modifying them as well would be required to make a consistent theory of truncated

Fourier modes. In particular one must address the Jacobi identity which provides the

statement that the operations in question do close to form a group.

The set of operations which provides a consistent truncation of the modes comes from
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changing the definition of the Fourier components of q(rt) by

1 M
'N(1) = -- •-- sin[aNn x m]la•(m)Qa(n - rn), (30)

m=-Af

where N = 2M + 1, all components n., m.,... are restricted to [-M,MI, and rCN = 27r/N.

In the limit M -+ oo or equivalently N --* oo, namely as tCN - 0, this definition of the

potential vorticity is the same as in the original Fourier transform. The definition of the

Fourier density for the Jacobian is modified to

1 =f 1-sin[iCNnA x m]Q(m) x Q(m')bn~m+m,pN(n) 2 = 2 lmM= - MfK

M 1
E S - sin[iNn X m Ql(l(n)Q 2 (n - m). (31)

in=-/ MkN

The definitions of the Q(n) and P(n) are unchanged and the Poisson brackets between

them are still

{Y 0(n),flb(m)} = 6 b6 ojm+n, (32)

with the rule that vector components out of [-M,M] are mapped back into the range.

Now the Poisson brackets among the ýN (n) and the other variables Y(n),JI(n),pN(n)

are found to be

S M

{ fN(n),Q.()} = I E sin[tcNn x m'lmom,'±mQ(n - m')nN m,=-M

- -- sin[KNn x rn]Q.(n + m), (33)
K•N

and

1{ýN(n),pHV(m)} = -sin[ICNn x mjp1-,(n + m), (34)
KN

1
{(tN~n),PN(m))} I sin[IaNn x m]pN(n + m), (35)

tKN

{CN(n), N(M)} = - sin j'cn x mI]CN(.l;- M). (36)
t1N



In each of these Poisson bracket relations we have used the trigonometric identity

sin(a[ni m'- m x n]) sin(a[n x m'j) +

sin(aln x m - n x m'j) = sin(a[n x m]) sin(af(n + in) x mni'), (37)

for an arbitrary (complex) constant a. For us a = PCN.

This set of Poisson brdckets defines a algebra which is SU(N) with the ý(n) as generators

of infinitesimal SU(N) transformations. The truncation of the Fourier modes with the

modification of the Poisson brackets now provides a consistent reduction from an infinite

number of modes to N. The critical issue in checking this consistency is verifying that

the Jacobi identity among Poisson brackets is satisfied, and with the change of structure

constants from n x m -• sin[•cNn x m] this is readily established.

We want to construct a Hamiltonian, rN, now which ;s invariant under this SU(N)

and becomes the shallow water Hamiltonian in the limit N -* oo. For this purpose we

need to investigate the Casimir invariants or" the SU(N) algebra. These we generalize from

the observations of Fairlie et. al. 110]. If the Poisson brackets of vN(n) with any function

in Fourier space f(m) is

I
{ýN(n), f(m)} = -sin[t.Nn x mI]f(n + n), (38)

teN

then the following sums Poisson commute with yN(n)

M

C2(f) = E f(n)f(m)bo,n+m,
n,ml=-M

M

C3(f) = E f(nj)f(n2)f(n3)expjitCN(n1 x n2 + nl x n3 + n2 x ns]b0,n,+n 2 nP,39)
I'1i=-M

and similarly

M

CL+1(f) = II explir'Nn. x npjf(nj)f(n 2)...f(nL)f(-(nj + n2 +... + nL))

(40)
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These sums go over in the limit xN -- 0 to the integrals

f d2 rIf(r)]if ', (41)

for j = 1,... L. We will use this in constructing IIN.

3.2 The Truncated Hamiltonian: HN

We begin by remembering how the full Lagrangian variable Hamiltonian

1 0
H (Q (n),r (n)) = - E I.(n)Ho(- n) + g dr J- (42)

2 1=-oof

conserves ý(n). The Poisson brackets of ý(n) with the first term is

E In x mn11(m + n)H 0(-m) - n x mlHa(m)lI,(n - re), (43)

which vanishes by symmetry; let m -- , -i in the second sum. The Poisson bracket of the

second term is

N (n drj}exp-In r], J-') (44)

which vanishes upon integration by parts.

When we change the structure constants in the Poisson brackets and truncate the modes

so all n are in [-MM], the Poisson bracket Of ýN(n) with the kinetic energy becomes

1 M 1 M
{ýN (n),• -E R(m)H (-m)} = - E2m=-M XN m=-,%

[sin[,cNn x mlIn(n + mn) -n(-m)

- sinIXNn x mIl/(m) fl(n - m)], (45)

which again vanishes because of symmetry.
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The Jacobian term is more tricky. The Poisson bracket of ýN(n) with

(27r) 2  M

JN~m)-- L4  • p (•n) exp[iXNn ml, (46)
n=-Mf

is

{•(n), JN(m)} exp1-itCNn- m](JN(m + i x n) - JN(m - i x n)). (47)
47"i

Though in the limit as xNp --* 0, this becomes the same as the continuum theory, it shows

that a Hamiltonian constructed out of integrals over d'r of J±" will not Poisson commute

with ý(n).

We choose instead to represent the quantity J-1 which appears under the integral in

the Hamiltonian as an expansion in powers around J = JO. The full expansion is

1 _1

J Jo-(Jo- J)

0k0
Doi(1 (48)

Ak=O A

which we truncate at k = N - 1 to

SN-Ij

J Jo

- 1 (1-(1--o)N). (49)

J JO

Clearly for (1 - /)N «< 1 this expression is essentially y* It is also a finite sum of powers

of J, and this leads to the approximation we will use in HN:

1 _ -1 -( - ) )
J J J

_ 1 N ,j
J)N- ~k I0 Z--)-CkN' (50)

which should be good for I1 - '7 < 1 or 0 < T < 2, which will suit our purposes quite

well.
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The idea is then to approximate f d'r 1 by

1 N /CJN)k-, 
(51)

0k=1 l(-j

and then to replace f d'r djPV 1 by , times

M

C.+1(PN) = Z I

expiilcNna x nf]PN(n,)PN(nf2)..pN(np)pN(-(nl + n 2 +... + np)),(52)

recalling that

L4 M
pN (m)- (2= N)2  Z JN(n) exp[-itcNm-n]. (53)

fl=-M

The Hamiltonian invariant under the action of the local SU(N) generators •(n)) is then

i~Z M N (27r)2A-2HN = - E 11(n). I(-n) + 1):CI,(

"2 n=-M Lk=i (2C-3)1 (PN). (54)
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